Uu-itp 09-1995 Remarks on Geometric Quantization of R-matrix Type Poisson Brackets
نویسنده
چکیده
We check the Vaisman condition of geometric quantization for R-matrix type Poisson pencil on a coadjoint orbit of a compact semisimple Lie group. It is shown that this condition isn't satisfied for hermitian symmetric spaces. We construct also some examples when Vaisman condition takes place.
منابع مشابه
Poisson homology of R - matrix type orbits I : example of computation Alexei
The Poisson homology was introduced in [1][9]. There are at least two reasons to study them. The first argument is that one can compute Hochschild complex for a deformed algebra of smooth functions using Poisson homology as the second term in appropriate spectral sequence. The next argument was established not so long time ago. There is a connection between canonical (Poisson homology) complex ...
متن کاملQuantum Orbits of R-matrix Type
Given a simple Lie algebra g, we consider the orbits in g * which are of R-matrix type, i.e., which possess a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the so-called R-matrix bracket. We call an algebra quantizing the latter bracket a quantum orbit of R-matrix type. We describe some orbits of this type explicitly and we construct a quantization of the whole Poisson pe...
متن کاملBrst Quantization of Quasi-symplectic Manifolds and Beyond
A class of factorizable Poisson brackets is studied which includes almost all reasonable Poisson manifolds. In the simplest case these brackets can be associated with symplectic Lie algebroids (or, in another terminology, with triangular Lie bialgebroids associated to a nondegenerate r-matrix). The BRST theory is applied to describe the geometry underlying these brackets and to develop a covari...
متن کاملInvariant quantization in one and two parameters on semisimple coadjoint orbits of simple Lie groups
Let A be the function algebra on a semisimple orbit, M , in the coadjoint representation of a simple Lie group, G, with the Lie algebra g. We study one and two parameter quantizations of A, Ah, At,h, such that the multiplication on the quantized algebra is invariant under action of the Drinfeld-Jimbo quantum group, Uh(g). In particular, the algebra At,h specializes at h = 0 to a U(g), or G, inv...
متن کاملOn the quantization of Poisson brackets
In this paper we introduce two classes of Poisson brackets on algebras (or on sheaves of algebras). We call them locally free and nonsingular Poisson brackets. Using the Fedosov’s method we prove that any locally free nonsingular Poisson bracket can be quantized. In particular, it follows from this that all Poisson brackets on an arbitrary field of characteristic zero can be quantized. The well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995